Logic Programming

And Prolog

5th-Generation Languages

» Declarative (nonprocedural)
> Functional Programming
- Logic Programming

» Imperative
> Object Oriented Programming

Nonprocedural Programming

Sorting procedurally:
I. Find the min in the remained numbers.
2. Swap it with the first number.
3. Repeat steps 1,2 until no number remains.

Sorting nonprocedurally:
1. Bis asorting of A — Bis a permutation of A
and B is ordered.
2. Bis ordered — for each i<j: BJi] < B[j]

Which is higher level?

Automated Theorem Proving

» A.T.P: Developing programs that can construct
formal proofs of propositions stated in a symbolic
language.

» Construct the desired result to prove its existence
(most A.T.P.’s).

» In Logic Programming, programs are expressed in
the form of ﬁropositions and the theorem prover
constructs the result(s).

» J. A. Robinson: A program is a theory (in some
logic) and computation is deduction from the
theory.

Programming In Logic (Prolog)

» Developed in Groupe d’Intelligence

Artificielle (GIA) of the University of
Marseilles (early 70s) to process a natural
anguage (French).
» Interpreters: Alg|oI—W (72), FORTRAN (73),
Pascal (76), Implemented on many
nlatforms (Now)

» Application in Al since mid-70s
» Successor to LISP for Al apps

» Not standardized (but has ISO standard
now)

Structural Organization
13.2

parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

grandparent(X,z) :- parent(X,Y), parent(y,Zz).
ancestor(X,z) :- parent(X,z).
ancestor(X,Y) :- parent(X,Y), ancestor(y,Zz).

sibling(X,Y) :- mother(M,X), mother(Mm,Y),
father(F,Xx), father(rF,Y), X \= Y.
cousin(X,Y) :- parent(u,X), parent(v,Y), sibling(u,V).

father(albert, jeffrey).
mother(alice, jeffrey).
father(albert, george).
mother(alice, george).
father(john, mary).
mother(sue, mary).
father(george, cindy).
mother(mary, cindy).
father(george, victor).
mother(mary, victor).

?- [kinship].
% kinship compiled 0.00 sec, 3,016 bytes
Yes

?- ancestor(X, cindy), sibling(X, jeffrey).

george J

wn |l

X
Ye

7?- grandparent(albert, victor).
Yes

?- cousin(alice, john).
No

?- sibling(A,B).

= jeffrey, B = george ; .
george, B = jeffrey ; o
cindy, B = victor ; .
victor, B = cindy ; J

|§J>J>J>J>
Il

SWI Prolog

Clauses

» Programs are constructed from A number of
clauses: <head> :- <body>

» Clauses have three forms:
- hypotheses (facts)

o conditions (rules) _
- goals i— assertions (database)

» Both <head > and <body> are composed of
relationships (also cdfted” p#Fieations or
[iterals)

Relationships

» Represent properties of and relations
among the individuals

» A relationship is application of a predicate
to one or more terms
» Terms:

- atoms (or constants): john, 25, ...
- variables (begin with uppercase letters): X, ...
- compounds

v Horn clause form: At most one relationship
in <head>

10

Compound Terms

» It is more convenient to describe individuals
without giving them names (expressions or
compounds as terms).

} lcfls)ingl func\forsl (ta[? S)[:>v -~ d(X,U,DU
(d(Xl,DVl,jB(VU)’.), plus(DU,DV)) :- d(X,U,DU),

» or using /nfix functors:
d(X, U+V, DuU+DV) - d(X,U,DU), d(X,V,DV).
» instead of
d(X,W,2) :- sum(U,V,W), d(X,U,DU), d(X,V,DV),
sum(DU,DV,2).
» with less readability and some other
things...

11

Data Structures
13.3

Primitives and Constructors

» Few primitives and No constructors.

» Data types and data structures are defined
implicitly by their properties.

13

Example (datatype)

» Natural number arithmetic

sum(succ(X), Y, succ(z)) :- sum(X,Y,Z).
sum(0,X,X).
dif(x,y,z) :- sum(z,VY,X).

:-sum(succ(succ(0)),succ(succ(succ(0))),A).
A = succ(succ(succ(succ(succ(0)))))

» Very inefficient! (Why such a decision?)
» Use of ‘is’ operator (unidirectional)

14

Principles

» Simplicity
- Small number of built-in data types and operations

» Regularity

- Uniform treatment of all data types as predicates
and terms

15

Data Structures

» Compound terms can represent data
structures

» Example: Lists in LISP

(car (cons X L)) = X
(cdr (cons X L)) =L
(cons (car L) (cdr L)) = L, for nonnull L

Lists in Prolog

» Using compound terms:
car(cons(X,L), X).
cdr(cons(X,L), L).
Tist(nil).
Tist(cons(X,L)) :- Tist(L).
null(niT).

» What about null(L)?

» How to accomplish (car (cons ‘(a b) ‘(c d)))?

17

Some Syntactic Sugar

» Using “.” infix functor (in some systems)
instead of cons:
> Clauses?

» Most Prolog systems allow the abbreviation:
o [Xyy Xoy ooy X1 = X0 Xyn onn Xl
> []1 = nil
> “.” is right associative!

18

Component Selection

v

append([1, L, L).
append(X.P, L, X.Q) :- append(P,L,Q).
Compare with LISP append:
(defun append (M L)
(if (null m)
L
(cons (car M) (append (cdr M) L))))

v

v

Taking apartin terms of putting togethen

- What X and P are cons’d to create M?
- What number do | add to 3 to get 5 (instead of 5-3)

Efficient!?

v

Implicitly done by pattern matching (unification).

19

Complex Structures

» A tree using lists (in LISP):
> (times (plus x y) (plusy 1))

» Using compound terms directly (as records):
> times(plus(x, y), plus(y, 1))

» Using predicates directly:
o sum(x, vy, t1).
o sum(y, 1, t2).
- prod(tl, t2, t3).

» Which is better?

20

Why Not Predicates?

Symbolic differentiation using predicate
structured expressions:

d(X,W,2) :- sum(U,V,W), d(X,Y,DU), d(X,V,DV),
sum(DU,DV,2).

d(X,wW,2) :- prod(U,V,W), d(X,U,DU), d(X,V,DV),

prod(DU,V,A), prod(U,DV,B), sum(A,B,2).
d(X, X, 1).
d(X,C,0) :- atomic(C), C \= X.

21

Why Not Predicates? (cont.)

» Waste use of intermediate (temporary)
variables
» Less readability
» Unexpected answers!
sum(x,1,z).
- d(x,z,D).
NO
- Why? What did you expect?
- How to correct it?

22

Closed World Model

» Al/that is true is what can be proved on the basis
of the facts and rules in the database.

» Very reasonable in object-oriented apps (modeling
a real or imagined world)
- All existing objects are defined.

0 lalg object have a given property which cannot be found in

» Not suitable for mathematical problems (Why?)

° An object is generally take to exist if its existance doesn’t
contradict the axioms.

» Predicates are better for OO-relationships,
Compounds for mathematical ones (Why?)
- We cannot assume existance of 1+0 whenever needed.

23

An Argument!

» What’s the answer?
equal (X, X).

;- equal (f(y),Y).
?

» What’s the /ogical meaning? (occurs check)
» Any other meaning?

» Can it be represented in a finite amount of
memory?

» Should we detect it?

24

Control Structures
13.4

Algorithm = Logic + Control

vV v

v

v

v

N. Wirth: Program = data structure + algorithm
R. Kowalski: Algorithm = logic + control

In conventional programming:
- Logic of a program is closely related to its contro/

- A change in order of statements alters the meaning of
program

In (pure) logic programming:

> Logic (logic phase) is determined by logical
interrelationships of the clauses not their order.

- Control (control phase) affects the orderin which actions

occur in time and only affects the efficiency of programs.

Orthogonality Principle

26

Top-Down vs. Bottom-Up
Control

» Top-down = Recursion:

> Try to reach the
hypotheses from the goal.

_ fib(2,F): -
» Bottom-up = Iteration: w2, e, = ARLF).
> Try to reach the goal from =
the hypotheses.

~fib(1,F) /~-fib(0,F)\ [.

- Work from both the goals
and the hypotheses and try

to meet in the middle.
.- fib(1,1). .- fib(0,1).
» Which one is better? | |
fib(0,1). fib(1,1).

fib(N,F) :- N=M+1, M=K+1, fib(M,G),
fib(K,H), F=G+H, N>1.

Procedural Interpretation

» We have seen /ogical and record (data structure)
interpretations.

» Clauses can also be viewed as procedure
/nvocations:.
- <head>: proc. definition
- <body>: proc. body (a series of proc. calls)
- Multiple definitions: branches of a conditional (case)
> fib() example...

» Procedure calls can be executed in any order or
even concurrently! (pure logic)

» Input/Output params are not distinguished!
: gib(3,3) — true. fib(3,F) — F=3. fib(N,3) — N=3. fib(N,F) —

28

Unify, Fail, Redo...

Heavy use of wnification, backtracking and
recursion.

Unification (Prolog pattern matching - from
Wikipedia):

> One-time assignment (binding)

> uninst. var with atom/term/another uninst. var (aliasing)
(occurs check)

o atom with the same atom

- compound with compound if top predicates and arities of
the terms are identical and if the parameters can be unified
S/mu/taneously

- We can use ‘=‘ operator to explicitly unify two terms

Backtracklng

- Make another choice if a choice (unif./match) failes or want
to find other answers.

> In logic prog. It is the rule rather than the exception.
> Very expensive!

Example: len([], 0). len(X.T, L+1) :- len(T,L).

v

v

v

v

29

Prolog’s Control Regime

» Prolog lang. is defined to use depth-first search:
- Top to bottom (try the clauses in order of entrance)
- Left to right

> In pure logic prog., some complete deductive algorithm
such as Robinson’s resolution algorithm must be
implemented.

» DFS other than BFS

- Needs much fewer memory

- Doesn’t work for an infinitely deep tree (responsibility of
programmer)

» Some programs may fail if clauses and subgoals
are not ordered correctly (pp.471-474)

» Predictable execution of impure predicates (write,
nl, read, retract, asserta, assertz, ...)

30

[trace] ?- ancestor(X, cindy), sibling(X,jeffrey).

Event Depth Subgoal

call: (1)
call: (2)
call: (3)
Exit: (3)
Exit: (2)
Exit: (1)
Call: (1)
Call: (2)
Exit: (2)
Call: (2)
Exit: (2)
Call: (2)
Exit: (2)
Call: (2)
Exit: (2)
Call: (2)
Exit: (2)
Exit: (1)
X = george

Yes

ancestor(X, cindy)
parent(X, cindy)
father(X, cindy)
father(george, cindy)
parent(george, cindy)
ancestor(george, cindy)
sibling(george, jeffrey)
mother(M, george)
mother(alice, george)
mother(alice, jeffrey)
mother(alice, jeffrey)
father(F, george)
father(albert, george)
father(albert, jeffrey)
father(albert, jeffrey)
george\=jeffrey
george\=jeffrey
sibling(george, jeffrey)

SWI Prolog

31

If we move parent(X,Y) :- father(X,Y) before parent(X,Y) :- mother(X,Y),

we have:
Event Depth Subgoal

Call: (1) ancestor(X, cindy)
call: (2) parent(X, cindy)

CcCall: (3) mother (X, cindy)

Exit: (3) mother(mary, cindy)
Exit: (2) parent(mary, cindy)
Exit: (1) ancestor(mary, cindy)
call: (1) sibling(mary, jeffrey)
call: (2) mother(M, mary)

Exit: (2) mother(sue, mary)
call: (2) mother(sue, jeffrey)
Fail: (2) mother(sue, jeffrey)
Redo: (2) mother(M, mary)

Fail: (2) mother(M, mary)

Fail: (1) sibling(mary, jeffrey)
Redo: (3) mother (X, cindy)

Fail: (3) mother(X, cindy)

Redo: (2) parent (X, cindy)

SWI Prolog

32

Cut! &

‘I’ Discard choice points of parent frame and
frames created after the parent frame.

v

Always is satisfied.

Uso?d to guarantee termination or control execution
order.

v v

v

i.e. in the goal :- p(x,a), !
> Only produce the 1st answer to X

- Probably only one X satisfies p and trying to find another
one leads to an infinite search!

» i.e. in the rule color(X,red) :- red(x), !.

- Don’t try other choices of red (mentioned above) and color
if X satisfies red

- Similar to then part of a if-then-elseif
Fisher, J.R., Prolog Tutorial,
http://www.csupomona.edu/~jrfisher/www/prolog_ tutorial/contents.html

33

Red-Green Cuts (1)

» A ‘green’ cut
- Only improves efficiency
- @.g. to avoid additional unnecessary computation

» A ‘red’ cut

- e.g. block what would be other consequences of the
program
> e.g. control execution order (procedural prog.)

Fisher, J.R., Prolog Tutorial,
http://www.csupomona.edu/~jrfisher/www/prolog_ tutorial/contents.html

34

Three Examples

See also MaclLennan’s example p.476

Fisher, J.R., Prolog Tutorial,
http://www.csupomona.edu/~jrfisher/www/prolog_ tutorial/contents.html

Higher-Order Rules

» Logic programming is limited to first-order
logic: can't bind variables to predicates
themselves.

» e.g. red (f-reduction) is illegal: (p(x,y,z) —
z=f(x,y))
red(P,I,[1,I).
red(P,I,X.L,S) :- red(P,I,L,T), P(X,T,S).

» But is legal if the latter be defined as:

red(P,I,X.L,S):- red(P,I,L,T), Q=..[P,X,T,S],
call(qQ).

- What's the difference?

36

Higher-Order Rules (cont.)

» In LISP, both code and data are first-order
objects, but in Prolog aren’t.

» Robinson resolution algorithm is refutation
complete for first-order predicate logic.

» Godel’s incompleteness theorem: No
algorithm is refutation complete for Aigher-
order predicate logic.

» So, Prolog /indirectly supports higher-order
rules.

37

Negative Facts

» How to define nonsibling? Logically...
nonsibling(X,Y) .- X =Y.

nonsibling(X,Y) :- mother(M1,X), mother(M2,Y), M1
\= M2.

nonsibling(X,Y) :- father(F1,X), father(F2,Y), F1 \=
F2.

» But if parents of X or Y are not in database?

- What is the answer of nonsibling? Can be solved
by...

nonsibling(X,Y) :- no_parent(X).
nonsibling(X,Y) :- no_parent(Y).
- How to define no_parent?

38

Negative Facts (cont.)

» Problem: There is no positive fact expressing
the absence of parent.

» Cause:
- Horn clauses are limited to
- C:- P1,P2,...,Pn = C holds if PIAP2A...APn hold.
- No conclusion if P1AP2A...APn don’t hold!
- If, notiff

39

Cut-fail

Solutions:

» Stating a// negative facts such as no_parent
> Tedious
o Error-prone

> Negative facts about sth are usually much more than
positive facts about it

» “Cut-fail” combination
- nonsibling(X,Y) is satisfiable if sibling(X,Y) is not (i.e.
sibling(X,Y) is unsatisfiable)
- nonsibling(X,Y) :- sibling(X,Y), !, fail.
> nonsibling(X,Y).
- how to define ‘fail’ ?!

40

negation :- unsatisfiablility

» ‘not’ predicate
- not(P) is satisfiable if P is not (i.e. is unsatisfiable).
- not(P) :- call(P), !, fail.
> not(P).
> nonsibling(X,Y) :- not(sibling(X,Y)).

» Is ‘not’ predicate the same as ‘logical
negation’? (see p.484)

41

Evaluation and Epilog
13.5

Topics

v

Logic programs are self-documenting

Pure logic programs separate logic and
control

» Prolog falls short of logic programming
» Implementation techniques are improving

» Prolog is a step toward nonprocedural
orogramming

v

43

Self-documentation

» Programming in a higher-level, ...
» Application orientation and...

» Transparency

- programs are described in terms of predicates and
individuals of the problem domain.

» Promotes clear, rapid, accurate programming

44

Separation of Logic and Control

» Simplifies programming
» Correctness only deals with logic

» Optimization in control cannot affect
correctness

» Obeys Orthogonality Principle

45

Prolog vs. Logic Programming

» Definite control strategy
- Programmers make explicit use of it and the result
have little to do with logic

- Reasoning about the order of events in Prolog is
comparable in difficaulty with most imperative of
conventional programming languages

» Cut doesn’t make any sense in logic!
» not doesn’t correspond to logical negation

46

Improving Efficiency

» Prolog is far from an efficient language.
» So, it’s applications are limited to apps in
which:

- Performance is not important
- Difficult to implement in a conventional lang.

» New methods are invented

» Some compilers produce code comparable to
LISP

47

Toward Nonprocedural

Programming

» Pure logic programs prove the possibility of
nonprocedural programming.

» In Prolog, DFS requires programmers to
think in terms of operations and their
proper ordering in time (procedurally).

» And Prolog’s control regime is more
unnatural than conventional languages.

» So, there is still much more important work
to be done before nonprocedural
programming becomes practical.

48

Covered Sections of MacLennan

13.1
13.2
13.3

13.4

> except topics starting on pp. 471, 475, 477, 484,
485, 486, 488

» 13.5

v v Vv v

Presentation References

» Colmerauer, Alain, Philippe Roussel, The Birth of Prolog, Nov.
1992, URL: http.//www.lim.univ-

mrs.fr/~colmer/ArchivesPublications/HistoireProlog/ 1 9nove
mber92.pdf

» Fisher, J.R., Prolog Tutorial, 2004, URL:

http.//www.csupomona.edu/~jrfisher/www/prolog_tutorial/c
ontents.htm/

» MacLennan, Bruce J., Principles of Programming Languages:
Design, Evaluation and Implementation, 3rd ed, Oxford
University Press, 1999

» Merritt, Dennis, “Prolog Under the Hood: An Honest Look”, PC
Al magazine, Sep/Oct 1992

» “Unification”, Wikipedia, the free encyclopedia, 25 Sep. 2005,
URL: http.://en.wikipedia.org/wiki/Unification

50

Thank You!

