
1

 Declarative (nonprocedural)
◦ Functional Programming

◦ Logic Programming

 Imperative
◦ Object Oriented Programming

2

Sorting procedurally:
1. Find the min in the remained numbers.
2. Swap it with the first number.
3. Repeat steps 1,2 until no number remains.

Sorting nonprocedurally:
1. B is a sorting of A ↔ B is a permutation of A

and B is ordered.
2. B is ordered ↔ for each i<j: B[i] ≤ B[j]

Which is higher level?

3

 A.T.P: Developing programs that can construct
formal proofs of propositions stated in a symbolic
language.

 Construct the desired result to prove its existence
(most A.T.P.’s).

 In Logic Programming, programs are expressed in
the form of propositions and the theorem prover
constructs the result(s).

 J. A. Robinson: A program is a theory (in some
logic) and computation is deduction from the
theory.

4

 Developed in Groupe d’Intelligence
Artificielle (GIA) of the University of
Marseilles (early 70s) to process a natural
language (French).

 Interpreters: Algol-W (72), FORTRAN (73),

Pascal (76), Implemented on many
platforms (Now)

 Application in AI since mid-70s
 Successor to LISP for AI apps

 Not standardized (but has ISO standard

now)

5

13.2

6

7

parent(X,Y) :- father(X,Y).

parent(X,Y) :- mother(X,Y).

grandparent(X,Z) :- parent(X,Y), parent(Y,Z).

ancestor(X,Z) :- parent(X,Z).

ancestor(X,Y) :- parent(X,Y), ancestor(Y,Z).

sibling(X,Y) :- mother(M,X), mother(M,Y),

 father(F,X), father(F,Y), X \= Y.

cousin(X,Y) :- parent(U,X), parent(V,Y), sibling(U,V).

father(albert, jeffrey).

mother(alice, jeffrey).

father(albert, george).

mother(alice, george).

father(john, mary).

mother(sue, mary).

father(george, cindy).

mother(mary, cindy).

father(george, victor).

mother(mary, victor).

8

?- [kinship].
% kinship compiled 0.00 sec, 3,016 bytes
Yes

?- ancestor(X, cindy), sibling(X, jeffrey).
X = george 
Yes

?- grandparent(albert, victor).
Yes

?- cousin(alice, john).
No

?- sibling(A,B).
A = jeffrey, B = george ; 
A = george, B = jeffrey ; 
A = cindy, B = victor ; 
A = victor, B = cindy ; 
No

SWI Prolog

 Programs are constructed from A number of
clauses: <head> :- <body>

 Clauses have three forms:
◦ hypotheses (facts)
◦ conditions (rules)
◦ goals

 Both <head> and <body> are composed of
relationships (also called predications or
literals)

9

assertions (database)

questions

 Represent properties of and relations
among the individuals

 A relationship is application of a predicate
to one or more terms

 Terms:
◦ atoms (or constants): john, 25, …
◦ variables (begin with uppercase letters): X, …
◦ compounds

 Horn clause form: At most one relationship
in <head>

10

 It is more convenient to describe individuals
without giving them names (expressions or
compounds as terms).

 using functors (tags):
d(X, plus(U,V), plus(DU,DV)) :- d(X,U,DU),

d(X,V,DV).
 or using infix functors:

d(X, U+V, DU+DV) :- d(X,U,DU), d(X,V,DV).
 instead of

d(X,W,Z) :- sum(U,V,W), d(X,U,DU), d(X,V,DV),
sum(DU,DV,Z).

 with less readability and some other
things…

11

13.3

12

 Few primitives and No constructors.

 Data types and data structures are defined
implicitly by their properties.

13

 Natural number arithmetic

sum(succ(X), Y, succ(Z)) :- sum(X,Y,Z).
sum(0,X,X).
dif(X,Y,Z) :- sum(Z,Y,X).

:-sum(succ(succ(0)),succ(succ(succ(0))),A).
A = succ(succ(succ(succ(succ(0)))))

 Very inefficient! (Why such a decision?)
 Use of ‘is’ operator (unidirectional)

14

 Simplicity
◦ Small number of built-in data types and operations

 Regularity
◦ Uniform treatment of all data types as predicates

and terms

15

 Compound terms can represent data
structures

 Example: Lists in LISP

(car (cons X L)) = X

(cdr (cons X L)) = L

(cons (car L) (cdr L)) = L, for nonnull L

16

 Using compound terms:
car(cons(X,L), X).

cdr(cons(X,L), L).

list(nil).

list(cons(X,L)) :- list(L).

null(nil).

 What about null(L)?

 How to accomplish (car (cons ‘(a b) ‘(c d)))?

17

 Using ‘.’ infix functor (in some systems)
instead of cons:
◦ Clauses?

 Most Prolog systems allow the abbreviation:
◦ [X1, X2, …, Xn] = X1. X2. … .Xn.nil

◦ [] = nil

◦ ‘.’ is right associative!

18

 Implicitly done by pattern matching (unification).
append([], L, L).
append(X.P, L, X.Q) :- append(P,L,Q).

 Compare with LISP append:
(defun append (M L)
 (if (null M)
 L
 (cons (car M) (append (cdr M) L))))

 Taking apart in terms of putting together!
◦ What X and P are cons’d to create M?
◦ What number do I add to 3 to get 5 (instead of 5-3)

 Efficient!?

19

 A tree using lists (in LISP):
◦ (times (plus x y) (plus y 1))

 Using compound terms directly (as records):
◦ times(plus(x, y), plus(y, 1))

 Using predicates directly:
◦ sum(x, y, t1).
◦ sum(y, 1, t2).
◦ prod(t1, t2, t3).

 Which is better?

20

Symbolic differentiation using predicate
structured expressions:

d(X,W,Z) :- sum(U,V,W), d(X,Y,DU), d(X,V,DV),

sum(DU,DV,Z).

d(X,W,Z) :- prod(U,V,W), d(X,U,DU), d(X,V,DV),
prod(DU,V,A), prod(U,DV,B), sum(A,B,Z).

d(X,X,1).

d(X,C,0) :- atomic(C), C \= X.

21

 Waste use of intermediate (temporary)
variables

 Less readability
 Unexpected answers!
sum(x,1,z).
:- d(x,z,D).
No
◦ Why? What did you expect?
◦ How to correct it?

22

 All that is true is what can be proved on the basis
of the facts and rules in the database.

 Very reasonable in object-oriented apps (modeling
a real or imagined world)
◦ All existing objects are defined.
◦ No object have a given property which cannot be found in

db.

 Not suitable for mathematical problems (Why?)
◦ An object is generally take to exist if its existance doesn’t

contradict the axioms.

 Predicates are better for OO-relationships,
Compounds for mathematical ones (Why?)
◦ We cannot assume existance of 1+0 whenever needed.

23

 What’s the answer?
equal(X,X).
:- equal(f(Y),Y).
?

 What’s the logical meaning? (occurs check)
 Any other meaning?
 Can it be represented in a finite amount of

memory?
 Should we detect it?

24

13.4

25

 N. Wirth: Program = data structure + algorithm
 R. Kowalski: Algorithm = logic + control

 In conventional programming:
◦ Logic of a program is closely related to its control
◦ A change in order of statements alters the meaning of

program

 In (pure) logic programming:
◦ Logic (logic phase) is determined by logical

interrelationships of the clauses not their order.
◦ Control (control phase) affects the order in which actions

occur in time and only affects the efficiency of programs.

 Orthogonality Principle

26

 Top-down ≈ Recursion:
◦ Try to reach the

hypotheses from the goal.

 Bottom-up ≈ Iteration:
◦ Try to reach the goal from

the hypotheses.

 Hybrid:
◦ Work from both the goals

and the hypotheses and try
to meet in the middle.

 Which one is better?

:- fib(3, F).
N=3, M=2, K=1,

F=G+H

:- fib(2,F).
 N=2, M=1, k=0,

F=G+H

:- fib(1,F).
F=1

:- fib(1,F).

F=1
:- fib(1,1).

:- fib(0,F).

F=1

:- fib(1,1). :- fib(0,1).

27

fib(0,1). fib(1,1).

fib(N,F) :- N=M+1, M=K+1, fib(M,G),

 fib(K,H), F=G+H, N>1.

 We have seen logical and record (data structure)
interpretations.

 Clauses can also be viewed as procedure
invocations:
◦ <head>: proc. definition
◦ <body>: proc. body (a series of proc. calls)
◦ Multiple definitions: branches of a conditional (case)
◦ fib() example…

 Procedure calls can be executed in any order or
even concurrently! (pure logic)

 Input/Output params are not distinguished!
◦ fib(3,3) ↔ true. fib(3,F) ↔ F=3. fib(N,3) ↔ N=3. fib(N,F) ↔

?

28

 Heavy use of unification, backtracking and
recursion.

 Unification (Prolog pattern matching – from
Wikipedia):
◦ One-time assignment (binding)
◦ uninst. var with atom/term/another uninst. var (aliasing)

(occurs check)
◦ atom with the same atom
◦ compound with compound if top predicates and arities of

the terms are identical and if the parameters can be unified
simultaneously

◦ We can use ‘=‘ operator to explicitly unify two terms

 Backtracking:
◦ Make another choice if a choice (unif./match) failes or want

to find other answers.
◦ In logic prog. It is the rule rather than the exception.
◦ Very expensive!

 Example: len([], 0). len(X.T, L+1) :- len(T,L).

29

 Prolog lang. is defined to use depth-first search:
◦ Top to bottom (try the clauses in order of entrance)
◦ Left to right
◦ In pure logic prog., some complete deductive algorithm

such as Robinson’s resolution algorithm must be
implemented.

 DFS other than BFS
◦ Needs much fewer memory
◦ Doesn’t work for an infinitely deep tree (responsibility of

programmer)

 Some programs may fail if clauses and subgoals
are not ordered correctly (pp.471-474)

 Predictable execution of impure predicates (write,
nl, read, retract, asserta, assertz, …)

30

31

[trace] ?- ancestor(X, cindy), sibling(X,jeffrey).
Event Depth Subgoal
==================================
Call: (1) ancestor(X, cindy)
Call: (2) parent(X, cindy)
Call: (3) father(X, cindy)
Exit: (3) father(george, cindy)
Exit: (2) parent(george, cindy)
Exit: (1) ancestor(george, cindy)
Call: (1) sibling(george, jeffrey)
Call: (2) mother(M, george)
Exit: (2) mother(alice, george)
Call: (2) mother(alice, jeffrey)
Exit: (2) mother(alice, jeffrey)
Call: (2) father(F, george)
Exit: (2) father(albert, george)
Call: (2) father(albert, jeffrey)
Exit: (2) father(albert, jeffrey)
Call: (2) george\=jeffrey
Exit: (2) george\=jeffrey
Exit: (1) sibling(george, jeffrey)

X = george
Yes

SWI Prolog

32

If we move parent(X,Y) :- father(X,Y) before parent(X,Y) :- mother(X,Y),

we have:
Event Depth Subgoal
==================================
Call: (1) ancestor(X, cindy)
Call: (2) parent(X, cindy)
Call: (3) mother(X, cindy)
Exit: (3) mother(mary, cindy)
Exit: (2) parent(mary, cindy)
Exit: (1) ancestor(mary, cindy)
Call: (1) sibling(mary, jeffrey)
Call: (2) mother(M, mary)
Exit: (2) mother(sue, mary)
Call: (2) mother(sue, jeffrey)
Fail: (2) mother(sue, jeffrey)
Redo: (2) mother(M, mary)
Fail: (2) mother(M, mary)
Fail: (1) sibling(mary, jeffrey)
Redo: (3) mother(X, cindy)
Fail: (3) mother(X, cindy)
Redo: (2) parent(X, cindy)
…

SWI Prolog

 ‘!’: Discard choice points of parent frame and
frames created after the parent frame.

 Always is satisfied.
 Used to guarantee termination or control execution

order.

 i.e. in the goal :- p(X,a), !
◦ Only produce the 1st answer to X
◦ Probably only one X satisfies p and trying to find another

one leads to an infinite search!

 i.e. in the rule color(X,red) :- red(X), !.
◦ Don’t try other choices of red (mentioned above) and color

if X satisfies red
◦ Similar to then part of a if-then-elseif

33

Fisher, J.R., Prolog Tutorial,

http://www.csupomona.edu/~jrfisher/www/prolog_tutorial/contents.html

 A ‘green’ cut
◦ Only improves efficiency

◦ e.g. to avoid additional unnecessary computation

 A ‘red’ cut
◦ e.g. block what would be other consequences of the

program

◦ e.g. control execution order (procedural prog.)

34

Fisher, J.R., Prolog Tutorial,

http://www.csupomona.edu/~jrfisher/www/prolog_tutorial/contents.html

p(a).
p(X) :- s(X), r(X).
p(X) :- u(X).

r(a). r(b).

s(a). s(b). s(c).

u(d).

:- p(X), !
:- r(X), !, s(Y).
:- r(X), s(Y), !
:- r(X), !, s(X).

part(a). part(b). part(c).
red(a). black(b).

color(P,red) :- red(P),!.
color(P,black) :- black(P),!.
color(P,unknown).

:- color(a, C).
:- color(c, C).
:- color(a, unknown).

35

Fisher, J.R., Prolog Tutorial,

http://www.csupomona.edu/~jrfisher/www/prolog_tutorial/contents.html

max(X,Y,Y) :- Y>X, !.

max(X,Y,X).

:- max(1,2,D).

:- max(1,2,1).

See also MacLennan’s example p.476

 Logic programming is limited to first-order
logic: can’t bind variables to predicates
themselves.

 e.g. red (f-reduction) is illegal: (p(x,y,z) ↔
z=f(x,y))
red(P,I,[],I).
red(P,I,X.L,S) :- red(P,I,L,T), P(X,T,S).

 But is legal if the latter be defined as:
red(P,I,X.L,S):- red(P,I,L,T), Q=..[P,X,T,S],
call(Q).

◦ What’s the difference?

36

 In LISP, both code and data are first-order
objects, but in Prolog aren’t.

 Robinson resolution algorithm is refutation
complete for first-order predicate logic.

 Gödel’s incompleteness theorem: No
algorithm is refutation complete for higher-
order predicate logic.

 So, Prolog indirectly supports higher-order
rules.

37

 How to define nonsibling? Logically…
nonsibling(X,Y) :- X = Y.
nonsibling(X,Y) :- mother(M1,X), mother(M2,Y), M1

\= M2.
nonsibling(X,Y) :- father(F1,X), father(F2,Y), F1 \=

F2.

 But if parents of X or Y are not in database?
◦ What is the answer of nonsibling? Can be solved

by…
nonsibling(X,Y) :- no_parent(X).
nonsibling(X,Y) :- no_parent(Y).
◦ How to define no_parent?

38

 Problem: There is no positive fact expressing
the absence of parent.

 Cause:
◦ Horn clauses are limited to

◦ C :- P1,P2,…,Pn ≡ C holds if P1^P2^…^Pn hold.

◦ No conclusion if P1^P2^…^Pn don’t hold!

◦ If, not iff

39

Solutions:
 Stating all negative facts such as no_parent
◦ Tedious
◦ Error-prone
◦ Negative facts about sth are usually much more than

positive facts about it

 “Cut-fail” combination
◦ nonsibling(X,Y) is satisfiable if sibling(X,Y) is not (i.e.

sibling(X,Y) is unsatisfiable)
◦ nonsibling(X,Y) :- sibling(X,Y), !, fail.
◦ nonsibling(X,Y).
◦ how to define ‘fail’ ?!

40

 ‘not’ predicate
◦ not(P) is satisfiable if P is not (i.e. is unsatisfiable).
◦ not(P) :- call(P), !, fail.
◦ not(P).
◦ nonsibling(X,Y) :- not(sibling(X,Y)).

 Is ‘not’ predicate the same as ‘logical
negation’? (see p.484)

41

13.5

42

 Logic programs are self-documenting

 Pure logic programs separate logic and
control

 Prolog falls short of logic programming

 Implementation techniques are improving

 Prolog is a step toward nonprocedural
programming

43

 Programming in a higher-level, …

 Application orientation and…

 Transparency
◦ programs are described in terms of predicates and

individuals of the problem domain.

 Promotes clear, rapid, accurate programming

44

 Simplifies programming

 Correctness only deals with logic

 Optimization in control cannot affect
correctness

 Obeys Orthogonality Principle

45

 Definite control strategy
◦ Programmers make explicit use of it and the result

have little to do with logic

◦ Reasoning about the order of events in Prolog is
comparable in difficaulty with most imperative of
conventional programming languages

 Cut doesn’t make any sense in logic!

 not doesn’t correspond to logical negation

46

 Prolog is far from an efficient language.

 So, it’s applications are limited to apps in
which:
◦ Performance is not important

◦ Difficult to implement in a conventional lang.

 New methods are invented

 Some compilers produce code comparable to
LISP

47

 Pure logic programs prove the possibility of
nonprocedural programming.

 In Prolog, DFS requires programmers to
think in terms of operations and their
proper ordering in time (procedurally).

 And Prolog’s control regime is more
unnatural than conventional languages.

 So, there is still much more important work
to be done before nonprocedural
programming becomes practical.

48

 13.1

 13.2

 13.3

 13.4
◦ except topics starting on pp. 471, 475, 477, 484,

485, 486, 488

 13.5

49

 Colmerauer, Alain, Philippe Roussel, The Birth of Prolog, Nov.
1992, URL: http://www.lim.univ-
mrs.fr/~colmer/ArchivesPublications/HistoireProlog/19nove
mber92.pdf

 Fisher, J.R., Prolog Tutorial, 2004, URL:
http://www.csupomona.edu/~jrfisher/www/prolog_tutorial/c
ontents.html

 MacLennan, Bruce J., Principles of Programming Languages:

Design, Evaluation and Implementation, 3rd ed, Oxford
University Press, 1999

 Merritt, Dennis, “Prolog Under the Hood: An Honest Look”, PC

AI magazine, Sep/Oct 1992

 “Unification”, Wikipedia, the free encyclopedia, 25 Sep. 2005,
URL: http://en.wikipedia.org/wiki/Unification

50

51

